Spec-Driven
Development with
Claude Code

Moving from Vibe Coding to
Production-Ready Orchestration

DEFINITION:
SDD is a workflow where specifications are the

primary artifact, and code 1s the generated output

derived from rigorous planning.

& NotebooklLM

The Ceiling of Vibe Coding: The Cycle of Failure

System Confidence / Code Integrity

i 4 ™
Prompt: "Add notification Prompt: "Why is the DB table
system." different?"
l\‘_Sta':’a*l:us: Works.) Status: Context Pollution.
A
0 5 10 15 20 25

Turns of Conversation (lteration)

It works for a function. It fails for a system.

& NotebooklLM

Three Structural Failure Modes
Diagnosing the breakdown of conversational workflows.

1. Context Loss 2. Assumption Drift 3. Pattern Violations

Al Execution _, 1 \l/

Intent

Mechanism: Iterative discovery Mechanism: Al fills silence with Mechanism: Generic training data
erases earlier constraints. Newer “reasonable defaults” that diverge clashes with your specific project
information overrides older nuance. from specific developer intent. patterns.
“Features that worked in Turn 5 “Code looks clean but uses a “Introducing a new DB table when a
break in Turn 15.” foreign architecture.” unified event bus already exists.”

& NotebooklLM

Inverting Control: From Chatting to Orchestrating

3+ IV

A
i
1
I
I
|
I
|
I
1
|
I
|
I
|
I
I
I
I
|
I
|
I
I
I
I
|
I
|
I
1

O

-
|
|
|
|
1
|
|
|
1
|
|
|
|
1
|
1
|
1
|
|
|
|
|
|
1
|
|
|
|
L
|

-

o = e e e e e e = e = e e = e e e e e e = = e = = = = = =

Level 3: Spec-as-Source

‘butssanb wod

Spec is primary artifact -
Code is regenerated on demand.

L e e

[
L e
l._""ll"-_“""'-""'_"""'-_"'“"|I

Context: Experimental / Future
Level 2: Spec-Anchored State.

Spec written first - Both
Spec and Code maintained.

Level 1: Spec-First

Spec guides implementation
il - Spec discarded.

£]

Insight: Front-loading context prevents the AI

Context: Best for quick tasks / Context: The Team Standard. Context: Experimental /
prototypes. Living documentation. Future State.

In SDD, the Specification is the sourod4 :3ybTsSul

prevents the AIm quessing. uTl

(S

g

tebookLM

The 4-Phase Workflow

Separating Planning from Execution

e

=

)

Phase 1: Phase 2: Phase 3: Phase 4.
Research Specification Refinement Implementation
Parallel Subagents. The Contract. The Interview. Task Delegation.
Input: Goal. Input: Findings. Input: Draft Spec. Input: Final Spec.
Output: Investigation Output: spec.md. Output: Decisions. Output: Atomic
Summaries. Commits.

Vibe Coding: Planning & Execution interleaved. Review implies approval fatigue.

SDD Workflow: Planning precedes Execution. Review happens at phase gates.

& NotebookLM

Phase 1: Parallel Research

Solving Context Pollution via Isolation

Agent A: Auth

Reading Oauth Docs
Context: Fresh

Agent B: Database

Analyzing SQL Schema
Context: Fresh

User/
Orchestrator

Consolidated
Report

Agent C: Ul

Reviewing Component Lib
Context: Fresh

Benefit: Hidden conflicts become visible. Agent A's confusion does not pollute Agent B's findings.

Prompt: "Spin up multiple subagents for your research task."

&1 NotebookLM

Phase 2: The Specification Template
The Source of Truth (spec.md)

spec.md -

1. Reference & Current Architecture
What ‘good’ looks like vs. where we are starting.

Principle: Combine

lz. Implementation Plan

The Phased approach strategy. 4 PRD thinking (Why)
. - with SRS precision

3. Implementation Checklist (How).

Atomic tasks ready for delegation.

4. Constraints & Success Criteria

Explicit boundaries: ‘What NOT to build’.
Measurable Metrics: 'P95 latency < 100ms’.

& NotebookLM

Phase 3: Refinement via Interview
The 10x Rule: Catching ambiguities before they become bugs.

1 Ambiguity in Spec = 10 Bugs 1in Code

Tool: ask_user_question. -]‘
Question: Should we migrate existing data Ambiguity Categories
or start fresh? J 1. Data Decisions
B = E 2. Conflict Resolution
3. Failure Recovery

Migrate. Keep last 30 days.

Question: Conflict resolution? Last wr'ite_‘
wins or user prompt?
—|

& NotebooklLM

Phase 4: Implementation & Delegation

The Task System

Main Agent
(Ol’Chestgrator) Delegates Task 2
Holds spec.md

D
e Aleg Task 3

are your devs. Use the Task Tool.

|

> You are the main agent. Subagents

—|

Subagent 1

(Active)

Fresh Context.
Commits. Dies.

(Waiting)

-SubagentS'

(Waiting)

& NotebooklLM

Backpressure & Quality Gates

Trust but Verify via Pre-Commit Hooks

Quality Gate (Husky)

Attempts
Commit

Typecheck
+ Lint
+ Test

Subagent P> Codebase

Error Feedback Loop.

Agent Self-Corrects. GOLY

Result: The human is not the bottleneck for syntax or basic logic checks.

& NotebooklLM

Proof of Concept: Alexop.dev Migration
Migration from SQLite to IndexedDB (15+ Files)

@ || P
45 14

Minutes Total Atomic Tasks Context Remaining

vs 4+ hours manual O Rollbacks vs 0% (Context Failure)
in Vibe Coding

-

5 Research Agents = 1 Refined Spec = 14 Implementation Tasks

& NotebookLM

Decision Framework
Heuristic: Does the complexity exceed working memory?

m
(USE SDD WHEN... (SKIP SDD WHEN...
- Large Refactors (15+ files)@@& - Single-file bug fixes &
' - Unclear Requirements () - Exploratory prototyping E@g;
D

(Research needed)

= - Production fires i
- Legacy Modernization % (Incident response) ®

- Learning new libraries H%?n
2 7

& NotebooklLM

The Lightweight Spec Pattern

The Middle Ground for Borderline Tasks

CONSTRAINTS Strategy: Start lightweight.
Boundaries to prevent If 1t reveals hidden
scope creep. complexity — Expand to

full 4-Phase WorkfLlow.

SUCCESS CRITERIA
The definition of Done. If not = Ship it.

& NotebooklLM

Prompt Patterns Cheat Sheet

RESEARCH SPEC-FIRST

> Spin up multiple subagents for > Your goal 1s to write a
your research task. Your goal is document. Do not write code yet.

to write a report.

REFINE IMPLEMENT

> Use the ask_user_guestion tool > Use the task tool. Each task by

to 1dentify ambigquities before we a subagent. Commit after each task.
implement. You are the main agent; subagents

are your devs.

& NotebookLM

The Future of Engineering

Typopatrist in Helvetica Now Display
General Agents Build Custom Agents

SDD 1isn’t about slowing down.
It’s about moving fast without breaking things.

1
Start with one spec on your next complex feature.

Spec-Driven Development / Claude Code
& NotebookLM

