Specification

Language of Al-Driven

Development.

Moving beyond formatting
to engineering precise
instructions for Al agents.

Markdown: The

o

-

@

Y

‘. Mo
ST
DA

\\

NN

.

X
QN

SR
s

V4

Architecture Level: Spec & Syntax [Version 1.0

You aren’t writing documentation. You are writing software specifications.

OLD PARADIGM: Markdown for Humans NEW PARADIGM: Markdown for Al

g

P O
B0
e Focus: Aesthetics & Readability e Focus: Structure & Scope
e Goal: A pretty document e Goal: Precise Code Generation
e Reader: A Human Colleague e Reader: An Inference Engine

KEY INSIGHT: Clear specs = accurate AI code.

& NotebooklLM

The Three-Layer Architecture of Al-Driven Development (AIDD)

Markdown is the bridge between Intent and Implementation.

LAYER 1: INTENT LAYER (The User)

Action: You write the Markdown specifications.
Purpose: Define the problem, features, and success criteria.

CONTROL PLANE

Markdown
Interface

LAYER 2: REASONING LAYER (The Al)

Action: Al parses Markdown to determine structure.
Purpose: Logic planning and library selection.

LAYER 3: IMPLEMENTATION LAYER (The Generatlon)

Action: Al generates the actual code. |
Purpose: Final build matching the spec e T

& NotebookLM

Headings define document hierarchy and scope.

Syntax Rules

Inter Regular

 # (H1): Document Title. Use
ONCE. Anchors global context.

o ## (H2): Main Sections (e.qg.,
Problem, Features).

o ### (H3): Subsections.
o ##i#t# (H4): Technical details.

Al Interpretation

Task Tracker App

Features

Add Tasks

—>| Scope: Task Tracker App

—>| Module: Features

Current Context
Window Focus

_>

Function: Add Tasks

& NotebookLM

Critical Syntax Rules for Structural Integrity.

Structure removes ambiguity.

1 2 3
Never Skip Levels Single Source of Truth Whitespace Matters
y HAH
ﬁ #Header
y
#iHeader &/

Do not jump from # to ###. Use only ONE H1 per document. Always place a space after
This breaks the logical Multiple H1s confuse the the hash symbol.

Inheritance tree. primary objective.

& NotebooklLM

List types signal dependency and execution order

Unordered Lists = Parallel Logic
Independent
Processing
- Feature A
L eatUResb
Independent
Processing

Ordered Lists = Sequential Logic

Dependency: Step 2

1. Install Dependencies Step 1: Install waits for Step 1 N SR
g2 RO Busd Dependencies ep £: Run bul

& NotebooklLM

Code Blocks eliminate ambiguity by
' showing exact expected outputs.

Structure removes ambiguity.

- %

“python ¢
def greet(name):

return f"Hello, {name}!"

Takeaway: Stop describing. Start demonstrating.

Fenced Code Block:

Defines the boundary of
truth.

Language Tag: Sets the
syntax environment.

Demonstration: Shows

exact logic, not just
description.

& NotebooklLM

Signal priority levels and external context.

Priority Signaling (Emphasis)
Inter Tight Medium

**Bold Text*=* REQUIRED / MUST HAVE

. SUGGESTED /
Italic Text NICE TO HAVE

. S CRITICAL SYSTEM
x**%Bold & Italic*x* REQUIREMENT

Context Anchoring (Links)
Inter Tight Medium

[Payment API Documentation](url)

J

Semantic Context: This text tells the Al
what to expect before it crawls the URL.

Never use non-descriptive link text.

&1 NotebookLM

Handling the Multimodal Blind Spot

Spec.md

BAD

Parser

| [FLowchart of Auth]
(image.png)

I [image] (chart.png)

GOOD

Alt Text Data:
"Flowchart of Auth"

|

Image.png

! [FLlowchart showing authentication logic via 0Auth2](chart.png)

The Blind Spot: Text-based Al
coding agents often read the
syntax, not the pixel data.

Functional Requirement: Alt
Text is not just for accessibility.

It is Context Injection for the
Al.

& NotebooklLM

Reference: The AIDD Markdown Specification Checklist

Hierarchy

H o= H'ljr ot = H2,
Never skip
levels.

Context

Descriptive 1link
text, never

|

click here'

Dependencies

Ordered (1.) =
Sequential.

Unordered (-) =
Parallel.

Visibility

ALt text = Data
description for
parsers.

Precision

Use Code BLlocKs
(""7) for ground

truth.

Priority

**xBold*x* 1s
required.
Italic is
optional.

Language

Tag
(e.

oF i

w |
hat Wl | Y

g., python,

json).

&1 NotebookLM

The quality of your spec determines
the quality of the code.

Master the syntax. Control the build.

Intent (You) -> Reasoning (Al) -> Implementation (Code).

& NotebookLM

